

Materials

Nancy Garland

Targets and Status

Bipolar Plates

Characteristic	Units	Target	Status
Weight	kg/kW of system	<1	
H ₂ permeation rate	cm ³ /s ¹ -cm ²	<2x10 ⁻⁶ @80°C, 3 atm	<<2 x 10 ⁻⁶
corrosion rate	μA/cm²	16	5-6 (C) 1 (nitride@0.9 V vs SHE)
conductivity	$1/\Omega$ -cm	>100	200-300 (C) 10,000 (nitride)
cost	\$/kW	<10	5.5 (C)

Materials Challenges & Objectives

Challenges

- Manufacturing processes
- Stack material cost
- Weight
- Cost vs performance
- Thermal/water management

Objectives

- Investigate and develop materials for low-cost, lightweight, corrosion-resistant, and impermeable bipolar plates
- Investigate and develop materials to improve heat transfer and reduce the size and cost of heat rejection components

Materials Projects

National Lab Projects ORNL

- Carbon Composite Bipolar Plates
- Metallic Bipolar Plates
- Carbon Foam for Fuel Cell Humidification

ANL

 Low-friction Coatings for Fuel Cell Air Compressors

Industry Projects

Gas Technology Institute

 Development of a \$10/kW Bipolar Separator Plate

Porvair Corporation

 Scale-Up of Carbon/Carbon Composite Bipolar Plates

Industry Interactions/ Technology Transfer

ORNL licensed bipolar plate technology to Porvair who will scale-up and demonstrate a pilot-plant facility

ORNL licensed carbon foam technology to Poco Graphite for large-volume applications

Discussion Points

Should the tech targets for bipolar plates be revised/updated?

How will raising the operating temperature of the membrane to 150°C affect bipolar plate performance and durability?

